Experiment No.

(9)

Resistors in Series and Parallel

Objectives:

- 1. The student will connect resistors in series and measure their equivalent resistance.
- 2. The student will connect resistors in parallel and measure their equivalent resistance.
- 3. The student will calculate the equivalent resistance using the equations of resistors connected in series and parallel, and compare these theoretical results with the measured results.
- 4. The student will connect multiple resistors in series and parallel combinations and measure their equivalent resistance.

Apparatus:

- Basics Board
- Fixed Resistors
- DMM
- Jumpers

Procedure and Conclusions:

Resistors in Series:

- 1. Insert resistor 100Ω at the pair (J), consider it $R_{1.}$
- 2. Insert resistor 220Ω at the pair (I), consider it R_2
- 3. Turn the selection dial of the DMM to the Ohm mode (range 2000) .
- 4. Insert the DMM probes at the points (1) & (12) to measure the

resistance of R1

- 5. Insert the DMM probes at the points (12) & (11) to measure the resistance of R2
- 6. Insert the DMM probes at the points 1 & 11 to measure the equivalent resistance (R_{total}) of the two resistors in series.
- 7. Calculate the equivalent resistance (R_{total}) using resistors in series formula $(R_{total} = R_1 + R_2)$ and compare this result with measured value that you obtained in the previous step.
- For R_1 :

• For R_2 :

Measured value Ω

- Measured equivalent resistance for $R_1 \& R_2$ in series $R_{total} = \dots \Omega$
- Calculated equivalent resistance for $R_1 \& R_2$ in series $R_{total} = \dots \Omega$
- 8. Insert a resistor 1 K Ω at the pair (K), consider it R_3 .
- 9. Insert the DMM probes in points (11) and (13) to measure the equivalent resistance for the three resistors in series.
- The equivalent resistance you measured for R_1 , R_2 & R_3 in series $R_{total} = \dots \Omega$
- The equivalent resistance you calculated for R_1 , R_2 & R_3 in series $R_{total} = \Omega$

Notes:

• Formula (equation) for the calculation of resistances connected in resistors:

$$R_{\text{total}} = R_1 + R_2 + R_3 + \dots$$

Resistors in Parallel:

Resstors in Parallel

- 1. Insert resistor 100Ω at the pair (J), consider it $R_{1.}$
- 2. Insert resistor 220Ω at the pair (K), consider it R_2 .
- 3. Insert jumpers at the pairs (I, L)
- 4. Insert the DMM probes at the points (1) and (11) to measure the equivalent resistance of the two resistors in parallel, calculate the equivalent resistance using resistors in parallel formula: $(1/R_{total} = 1/R_1 + 1/R_2)$ and compare the result with measured value.
- The equivalent resistance you measured for R_1 & R_2 connected in parallel $R_{total} = \dots \Omega$.
- The equivalent resistance you calculated for $R_1 \& R_2$ connected in parallel $R_{total} = \dots \Omega$.

Notes:

• Formula (equation) for the calculation of two resistances R₁ and R₂ connected in parallel:

$$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$R_{\text{total}} = R_1 || R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

- 2. Insert a resistor $1K\Omega$ at pair (N) & jumpers at the pairs (A, H, M).
- 3. Insert the DMM probes at points (1) and (11) to measure the equivalent resistance for the three resistors in parallel.
- The equivalent resistance you measured for R_1 , R_2 & R_3 in parallel = Ω
- The equivalent resistance you calculated for $R_1, R_2 \& R_3$ in parallel = Ω
- 4. Connect in parallel two resistors with equal values (e.g. 100Ω) and measure their equivalent resistance.
- From the above step, we conclude that for two resistors with equal values connected in parallel, the equivalent resistance = ... half / third / quarter ... one of them.
- 5. Use Loops I & II on Basics board to combine multi resistors in series and parallel as shown in the diagram below, calculate and measure their equivalent resistance.
- Measured equivalent resistance for this combination = Ω
- Calculated equivalent resistance for this combination = Ω

Discussion

- 1. Four equal resistors are connected in parallel, each resistor has an ohmic value of 100 ohms, what is the expected equivalent resistance?
- 2. Four equal resistors are connected in series, each resistor has an ohmic value of 100 ohms, what is the expected equivalent resistance?